Effects of oceanic salinity on body condition in sea snakes.

نویسندگان

  • François Brischoux
  • Virginie Rolland
  • Xavier Bonnet
  • Matthieu Caillaud
  • Richard Shine
چکیده

Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Iranian Snakes Venom True Sea and Terrestrial Snakes on Some Bacterial Cultures

The antibacterial activities of eight snake crude venom (Macrovipera lebetina obtusa, Pseudocerastes persicus, Pseudocerastes urarachnoides, Echis carinatus sochureki, Gloydius halys caucasicus, Naja (naja) oxiana, and two species of true sea snakes Enhydrina schistose and Hydrophis cyanocinctus) were assessed against five important standard pathogenic bacterial strains (Escherichia coli, ...

متن کامل

Effects of Salinity on Embryonic and Early Larval Development of a Tropical Sea Urchin, Salmacis sphaeroides

Effects of salinity on fertilization, embryonic stage, and early larval development and growth performances of short-spined white sea urchin, Salmacis sphaeroides were conducted under a controlled laboratory condition. The experiment was carried out with seven salinity treatments (15, 20, 25, 30, 35, 40 and 45 PSU), each of which was triplicated. Significantly highest fertilization success was ...

متن کامل

Effects of Salinity on Embryonic and Early Larval Development of a Tropical Sea Urchin, Salmacis sphaeroides

Effects of salinity on fertilization, embryonic stage, and early larval development and growth performances of short-spined white sea urchin, Salmacis sphaeroides were conducted under a controlled laboratory condition. The experiment was carried out with seven salinity treatments (15, 20, 25, 30, 35, 40 and 45 PSU), each of which was triplicated. Significantly highest fertilization success was ...

متن کامل

Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation mod...

متن کامل

Detection of multidecadal oceanic variability by ocean data assimilation in the context of a ‘‘perfect’’ coupled model

[1] The impact of oceanic observing systems, external radiative forcings due to greenhouse gas and natural aerosol (GHGNA), and oceanic initial conditions on long time variability of oceanic heat content and salinity is assessed by the assimilation of oceanic ‘‘observations’’ in the context of a ‘‘perfect’’ Intergovernmental Panel on Climate Change Fourth Assessment Report model. According to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2012